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1. Introduction 
 
1.1 General 
 
The overall problem we’re solving is that we want to be able to set up the 
relationships between the coordinates of arbitrary physical points in space (e.g. 
ground points) and their coordinates on line scanner (or “pushbroom”) camera 
images.  We then want to do a least squares solution in order to come up with 
consistent camera orientation and position information that represents these 
relationships accurately. 
 
For now, supported by funding from the NASA Critical Data Products initiative 
(for 2003 September to 2005 August), we will concentrate on handling the 
THEMIS IR camera system (Christensen et al., 2003).  Although it is in fact a 
multispectral line scanner camera system, we will (generally) treat it for now as a 
single line scanner camera system.  (At some future point the multiple spectral 
images sensors could allow this system to be treated as a multi-line scanner 
camera system.)  As much as possible, we will also keep our options open for 
processing of other planetary line scanner camera systems.  In particular, in the 
near term of the next 1-2 years, we plan to make modifications to allow for 
processing of images from first the Mars Express HRSC camera system (a 9 line 
scanner camera system, with 3 sets of 3 lines for color) (Neukum et al., 2004) 
and secondly the Mars Reconnaissance Orbiter (MRO) HiRISE camera system 
(McEwen et al., 2002; Kirk, 2004 – see Appendix II).  In the longer term we may 
seek funding to allow for processing of Mars Global Surveyor (MGS) Mars 
Orbiter Camera (MOC) wide angle (WA) and narrow angle (NA) cameras (Malin 
et al., 1992; Malin and Edgett, 2001), as well as the Cassini UVIS camera.  We 
may also consider allowing for processing of images from the multispectral 
Cassini VIMS pixel scanner (“whiskbroom”) system. 
 
The basic processing steps are essentially the same as those required for a 
framing camera system, e.g. as already implemented in the RAND-USGS 
Planetary Geodesy (RUPG) software system (Colvin, 1992; Archinal et al, 2002-
2004).  The essential difference is that it becomes necessary to solve for the 
position and (external) orientation of the camera for every line (or pixel for a pixel 
scanner) rather than just once per frame.  Using standard techniques such a 
problem is substantially underdetermined, particularly using any reasonable 
number of tie point measurements per image.  The straightforward solution – in 
theory but not necessarily in practice – is to add parameters that model the 
camera position and orientation changes as the image is collected, as offsets 
from one or more sets of discrete values (e.g. the one set a framing camera 
would have). 
 
A search of the literature shows a nearly overwhelming number of ways in which 
to model the motions taking place during image collection.  A difficult part of the 
implementation here has indeed been to select one of the methods used.  
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Methods developed previously have had varying dependencies on the specific 
camera system, e.g. whether airborne or satellite, number of lines, availability of 
auxiliary information, accuracy and time density of orbit and orientation 
information, size of the image, etc. 
 
Common methods previously used seem to be categorized into: a) fitting smooth 
curves of position and orientation changes between discrete lines (e.g. breaking 
up the image into multiple sections, and for each section relying on measured 
satellite position via GPS and orientation via some inertial system) (e.g. Poli et 
al., 2004); b) fitting simple polynomial offsets for position and orientation (e.g. 
Kratky, 1989; Fritsch and Stallmann, 2002); c) fitting Lagrangian interpolation 
polynomial offsets for position and orientation (which seems to be preferred over 
spline interpolation methods); and d) fitting offsets for position by one of the other 
methods and for orientation with Fourier series offsets (partially to allow for 
recovery of high frequency jitter, e.g. with Oberst’s (2002) HWBUNDLE lite 
program).  Reviews of possible methods are given for example by Gruen and 
Zhang (2003); Poli et al. (2004), and Toutin (2004). 
 
The orbits are also modeled either as simply a function of Cartesian coordinates, 
or for longer arcs or to better represent the orbit parameters uncertainties or to 
allow for the use in more complicated orbit solutions, as a function of Keplerian 
elements. 
 
Finally, additional parameters are required in order to represent the geometry of 
each line of a line scanner camera relative the camera boresight, and therefore in 
effect the relative line scanner positions. 
 
For the purpose of implementing a line scanner camera adjustment procedure for 
THEMIS IR, we will use second order polynomials to represent camera 
(spacecraft) Cartesian coordinates and orientation.  Initially, we will assume that 
camera calibration information is known (e.g. as already used in ISIS).  At a later 
date, we could extend our model to allow for the adjustment of the line scanner 
position relative to the boresight, as well as adjustment of the absolute start time 
of each image or image portion (if an image has missing lines), and other 
calibration parameters as necessary.  This model could also be extended to 
allow for the use of other models of interpolation of position and orientation 
between lines, as the need arises for other missions.  See Section 6 below for a 
discussion of this and other possible future extensions. 
 
For the purpose of software implementation, it has been assumed that the RUPG 
randlsq program would be modified.  Other options exist, such as rewriting that 
program, writing something from scratch, or waiting until the adjustment program 
planned for DISR and MER processing is complete – and then modifying it.  
However, the randlsq modification option currently appears to be the most 
practical and time- and cost-effective, for reasons discussed further in Section 4. 
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In the rest of this paper, material on the specific new parameters and how 
relevant partial derivatives should be computed is presented in Section 2.  In 
section 3 I provide briefly – more as a review reference then anything else - the 
equations for how these observation equations and their partials can be used in a 
least squares adjustment in order to recover estimates of improved parameter 
values and their variances and covariances.  Section 4 considers what specific 
changes will be needed to the randlsq software and suggests how these could be 
implemented.  Section 5 briefly discusses the testing we plan to do, and lists a 
few items for planned near-term implementation.  Section 6 discusses items that 
could be or will be (e.g. handling images from other missions) implemented in the 
longer term. 
 
This write-up concludes with a list of references, not all cited here, but including 
many regarding the RUPG software, and line scanner camera data handling.  
The usefulness of these references is annotated in the list (in brackets).  
Appendix I reproduces the first part of Colvin’s (1992) write-up concerning the 
theory used in what has become the randlsq program.  This is important not only 
since it explains to a reasonable extent the implementation/code in randlsq, but 
since Section 2 here is based on the same formulation.  Appendix II reproduces 
a recent e-mail from R. Kirk which describes the HiRISE camera model and 
therefore includes examples of the type of camera calibration parameters needed 
for a (multi) line-scanner camera system. 
 
For information on ISIS, see Eliason (1997); Gaddis et al. (1997); Torson and 
Becker (1997) and http://isis.astrogeology.usgs.gov/. 
 
 
1.2 Conventions 
 
Vectors and matrices are shown as a single bold variable.   
 
Note that (so far) in the equations presented following, there is no distinction 
between image measurements of the same point on different images, or on 
different images from different cameras.  Bookkeeping of this information will 
obviously need to be done (i.e. extended as needed) in the randlsq software. 
 
Also note that in randlsq, x increases with sample values (across the image) and 
y increases with line values (along the image), as “sample” and “line” is defined 
in the ISIS qmatch software (e-mail from B. Archinal to R. Sucharski of 2003 
January 27). 
 
 
 
2. Observations Equations and Their Partials 
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The following discussion is based on that given by Colvin (1992) which is the 
basis for the current randlsq program.  For reference, Colvin’s discussion is 
reproduced below in Appendix I.  It is based on the assumption that one starts 
with the ground point coordinates, and then the transformation through 
successive coordinate systems is derived, back to the camera image plane (x, y) 
measurements.  Note that this is different from the more common 
photogrammetric solution presentation, where the overall transformation – the 
collinearity equations – from image to ground coordinates is presented first, and 
then the component transformations derived in detail.  For an example of this sort 
of presentation, see e.g. McGlone (2004).  Needed partial derivatives are derived 
along the way, with the derivatives of the image plane measurements with 
respect to the parameters then computed as needed, e.g. using the chain rule. 
 
So rather then derive everything anew, what is given here is an extension of the 
presentation by Colvin.  In section 2.1 the additional parameters and model 
needed to model a line scanner camera are presented.  In section 2.2 the 
needed additional partial derivatives are derived.  These collectively can then be 
used to modify the randlsq program in order to adjust image measures (the basic 
observations) of line scanner camera images. 
 
 
2.1 Line Scanner Camera Specific Modeling 
 
Let’s assume the inertial position of the spacecraft in the body (Mars) centered 
system is given by XS, YS, and ZS.  The boresight of the camera (for a given line) 
is pointed toward the (quasi-inertial) ICRF (i.e. “J2000.0”) right ascension and 
declinationα̂ , δ̂ , and the line is rotated from north by the twist angleκ .  This is all 
at time t. 
 
We will assume that (up to) second order polynomial variations are possible in 
the spacecraft position and pointing.  This gives us (McGlone, pp. 290-291, 
equations 3.138 and 3.139): 
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Where X0, Y0, and Z0 is the position of the spacecraft at some reference time tR, 
which we will assume here is the time of the central line of a particular image.  
Similarly, the camera orientation at that moment is given by the J2000.0 right 
ascension and declination 0α̂ , 0̂δ , and twist angle 0κ . 
 
To allow for unknown variations in the spacecraft position and orientation while 
the image is being obtained, we will solve for some or all of additional unknowns   
X1, Y1, Z1, X2, Y2, Z2, 1α̂ , 1̂δ , 1κ , 2α̂ , 2δ̂ , and 2κ . 
 
Some experimentation will be needed in order to determine what the best 
parameter set is.  There are several possible cases: 
 

1. Currently, for framing cameras, we solve only for 0α̂ , 0̂δ , and 0κ  for each 
image.  Solutions with only these parameters can/should be done to 
provide checks that the algorithm and software are working, and for 
comparison with solutions with additional parameters. 

2. Solving for the satellite reference position X0, Y0, and Z0 would be the next 
step, although when these parameters are solved for it is likely they will 
need to be constrained (weighted) at their likely level of accuracy.  See 
Section 2.2.4 below for additional comments on this. 

3. Solving for rates of change in the spacecraft position and (camera) 
orientation would likely be next, i.e. for the coefficients X1, Y1, Z1, 1α̂ , 1̂δ , 
and 1κ . 

4. For particularly long images (many lines) solving for acceleration of the 
spacecraft position and camera orientation may possibly be necessary, 
i.e. for the coefficients X2, Y2, Z2, 2α̂ , 2δ̂ , and 2κ . 

 
Ultimately, only testing will show whether this overall polynomial model is 
satisfactory.  It may be necessary to substitute some other types of models for 
equations 1 and 2, e.g. fitting some other types of polynomials, Fourier series 
(Oberst, 2002), or perhaps even parameters that correspond to changes in 
Keplerian orbit parameters.  Such changes may also be necessary for other 
spacecraft/camera combinations, e.g. with known “jitter” problems (e.g. 
MGS/MOC) or higher resolutions (e.g. MRO/HiRISE). 
 
For multiple line scanner cameras, we need only impose two additional 
requirements to our model.  First, that the time t of any lines is referenced to a 
reference line in one of the line scanner images.  Secondly, orientation need only 
be solved for for one of the images being collected by the camera, with the 
orientation of the other images fixed by a set offset angle (or set of rotations).  
(Although it may also be necessary to solve for this angle or angles for calibration 
purposes.) 
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It may also be useful to add parameters for additional camera calibration, e.g. the 
focal length f, of the center of the line, a scale factor along the line reflecting any 
change in focal length along the line or tilt of the linear array relative to the focal 
plane, the offset of the center of the line from the camera boresight, i.e. x0 and y0, 
and possibly other camera constants (e.g. for distortion).  As an example and for 
future use here, this type of parameterization is discussed by R. Kirk for the 
HiRISE camera (e-mail to HiGeom group mailing list of 2004 November 22 – see 
Appendix II). 
 
 
2.2 Partials for New Parameters 
 
As mentioned above, the only new parameters being solved for in comparison to 
a solution using measurements from a framing camera are (for each image): X0, 
Y0, Z0, X1, Y1, Z1, X2, Y2, Z2, 1α̂ , 1̂δ , 1κ , 2α̂ , 2δ̂ , and 2κ . 
 
We therefore need to modify the current randlsq algorithm/program to compute 
partial derivatives of the observation equations for these parameters (in addition 
to the partials being computed for existing parameters), and to use these partials 
to set up the solution for the selected parameters. 
 
2.2.1 Orientation Partials 
 
We already have (from (Colvin, 1992, equation 9 and following) the definition of 
the camera orientation matrix C and its partial derivatives with respect to the 

three camera angles, i.e. C, 
α̂∂
∂C , 
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So from Colvin (1992) equation 9 we have: 
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As noted earlier, the 0α̂ , 0̂δ , and 0κ  parameters actually correspond exactly to 

the  α̂ , δ̂ ,  andκ  parameters of the framing camera case, and the partials with 
respect to them for 0α̂ , 0̂δ , and 0κ  are (from equation 3) just 1.  So the partials of 
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C with respect to 0α̂ , 0̂δ , and 0κ  are simply the above partials with the angle of 
interest substituted: 
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The partials of α̂ , δ̂ , and κ  with respect to 1α̂ , 1̂δ , and 1κ  are (from equation 

4) just (t-tR), so the partials of C with respect to  1α̂ , 1̂δ , and 1κ  become: 
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The partials of α̂ , δ̂ , and κ  with respect to 2α̂ , 2δ̂ , and 2κ  are (from equation 

4) just (t-tR)2, so the partials of C with respect to 2α̂ , 2δ̂ , and 2κ  become: 
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2.2.2 Spatial Partials 
 
Next we need to calculate the partials relative to spacecraft position, i.e. relative 
to X0, Y0, Z0, X1, Y1, Z1, X2, Y2, Z2. 
 
We have (from equation 1) the following: 
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Colvin (1992, equation 8) defines the spacecraft position vector, with origin at the 
body center and in the J2000.0 coordinate system, as s.  Therefore, 
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However, we are now solving for spacecraft position (and velocity and 
acceleration) so now must consider the partials of s with respect to the various 
parameters, i.e. in Colvin’s terminology 
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So if the range vector (the vector subtended by the spacecraft and a control 
point) is given by (Colvin, equation 8) 
 

sssv −= ˆ  
 
then the partials of this with respect to the various parameters is now given by 
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2.2.3 Partials of the observations with respect to the parameters 
 
The range vector in camera coordinates is (Colvin’s equation 10) 
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vCs=γ  
 
and the partials of γ  now become 
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We can then proceed to use these partials of γ  with respect to the parameters in 
the observation equations, i.e. for the x and y image measurements (i.e. Colvin’s 
equation 11). 
 
However, note that in a line scanner camera, given the convention here that x is 
measured along the line (the sample value) and y is measured along the 
direction of line collection (the line value), the y camera coordinate will always be 
zero because in the formulation here the measures apply only to a given line.  
The actual geometry of that line is determined from the time of the line t, which is 
derived from the pixel line measurement line , e.g. 
 

lineRR tlinelinett δ)( −+=  
 
where Rt  is the time of the reference line Rline  and linetδ  is the time difference 
between adjacent lines.  For THEMIS IR images, the linetδ  value should be 
obtained from the image labels along with the time startt  for the starting line.  To 
keep the second order polynomials that will be fitted to the image’s position and 
orientation symmetric along the image, the reference line and time should be 
chosen to be that of some line in the middle of the image.  Therefore 
 

linestartRR tlinelinet δ)( −=    
 

Rline  can be chosen somewhat arbitrarily, e.g. as simply the line closest to the 
middle of the image in question. 
 
Note that this offset in line and time must be tracked so that when updated 
position and orientation (SPICE) data is output, it is correctly referenced as 
necessary to the start time of the image. 
 
 
2.2.4 Parameter Weighting 
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As noted in Section 2.1 above, it is likely, if not certain, that some of the newly 
added parameters will need to be constrained (or weighted) if used.  For 
example, it has long been known that for the narrow fields of view commonly 
used in planetary imaging systems, the orientation of the camera will be highly 
correlated with the camera (spacecraft) position.  This is of course the reason 
that randlsq does not currently allow one to solve for position. 
 
So in order to solve for both position and orientation (and even further for 
velocity, acceleration, and orientation velocity and acceleration) it will be 
necessary to weight these parameters.  This is done simply by estimating the 
accuracy of the a priori values of the parameters (for example, we can start by 
assuming the spacecraft position components are known to an accuracy of 100 
meters) and adding the inverse of these estimates (e.g. 1/100 m) to the given 
parameter’s position on the diagonal of the normal equations, before the 
equations are solved.  Such weighting is already possible under various 
circumstances in randlsq, e.g. using the original weighting scheme from RAND, 
where powers of ten weights could be added to specific parameters, and 
additions made here, e.g. where MOLA derived ground point positions and radii 
could be weighted, and where Clementine camera angles could be weighted. 
 
The main changes that will be required in randlsq will deal with inputting these 
weights (as discussed further in section 4 below) and adding them to the normal 
equations. 
 
It is also obvious that some experimentation will be required in order to determine 
what weights are needed for a given parameterization.  It would also be useful to 
investigate (e.g. in the case of THEMIS, with those knowledgeable about the 
2001 Mars Odyssey mission) how accurate the a priori SPICE information is 
likely to be and at least start with weights derived from such information. 
 
 
3. Adjustment Model 
 
Colvin (1992, pp. 6-7) very briefly discusses the overall adjustment model to be 
used.  For completeness and reference, included here are further details on the 
method of weighted least squares using observations equations.  This material 
derives from Uotila (1986, pp. 61-65, 95).  Also see Mikhail and Ackermann 
(1976) or any number of texts on least square solutions for a similar discussion. 
 
The idealized observation equations are: 
 

)(XF aaL =  
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where aL  are the theoretical values of the observations (an n x 1 vector, where n 
is the number of observations), which in turn are a function F of the theoretical 
parameter values X a  (a u x 1 vector, where u is the number of unknowns). 
 
This can also be expressed as: 
 

)( ˆˆ XF
aaL =  

 

where now aL̂  are the estimated values of the observations, which in turn are 
the same function F of the estimated parameter values X̂

a
. 

 
aL̂  can also be expressed as the actual value of the observations, bL  plus a 

difference vector, known as V , the residuals: 
 

Vb +=LL
aˆ  

 
The idealized parameter values X

aˆ , can also be expressed in terms of their 

approximate values X0  plus a difference vector X̂ : 
 

XXX
a ˆˆ 0 +=  (8) 

 
If we take the partials of the function F with respect to the parameter values, we 
obtain the partials: 
 

A
X

a =
∂

∂

ˆ
F  (9) 

 
where A  is an n by u matrix. 
 
We also can also use the approximate parameter values X0  in the function F, in 

order to derive initial estimates L0  of the observations: 
 

)(XL 00 F=  (10) 
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The difference between these initial estimates of the observations L0  and the 

observations themselves Lb  is: 
 

LLL 0 b−=  (11) 
 
(As an aside, the negative of the above values are often called the “O-C’s”, i.e. 
the observed minus the computed values.) 
 
We also can estimate in various ways a weight matrix for the observations, i.e.: 
 

∑−
=

1

Lb
P 2

oσ  (12) 
 
where P  is an n by n weight matrix, 2

oσ  is the a priori variance of unit weight 

(usually set to 1), and ∑−1

Lb
is an n by n estimated weight matrix for the 

observations.  This is usually a diagonal matrix, with the diagonal elements only 
expressing the estimated relative accuracy of the observations.  As we will see in 
our case the observations are all image measurements, so they may indeed all 
have the same relative accuracy, meaning ∑−1

Lb
could be an identity matrix. 

 
The normal (u by u) matrix then becomes: 
 

PAAN T=  (13) 
 
It can then be shown (using the method of minimizing the sum of the squares of 

the residualsV ) that the correct solution for the parameters' differences X̂  is 
given by the following normal equations: 
 

PLA(N)X T1−−=ˆ  (14) 
 
The residuals then are: 
 

PLQ)PLAAN(PLAXV v
T11 =−== −−+  (15) 

 
The (scalar) sum of the square of the residuals is: 
 

PLAXPLLPVV TTTT ˆ+=  (16) 
 
The (scalar) a posteriori variance of unit weight is: 
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uno −
=

PVVT
2σ̂  (17) 

 
where as before, n is the number of observations and u is the number of 
unknown parameters.  “n-u” is also known as the degrees of freedom of the 
solution. 
 
It can also be shown that the estimated variance-covariance matrix (of size u by 
u) for the parameters, assuming normally distributed errors in the measurements, 
is: 
 

12
ˆ )( −=∑ NaX oσ  (18) 

 
The estimated variance-covariance matrix for the idealized observations (of size 
n by n) then is: 
 

T
o AA(N)aL

12 −=∑ σ  (19) 
 
This can be compared to ∑ bL

 in order to make sure the initial estimate of 
weights for the observations is reasonable. 
 
The estimated variance-covariance matrix (of size n by n) for the residuals is 
sometimes desired, and it is: 
 

))(( 112 T
o ANAP

V
−− −=∑ σ  (20) 

 
 
4. Implementation 
 
Initially it was not clear whether the adjustment of line scanner camera images 
should be implemented as changes in the RUPG software (i.e. randlsq), in a 
totally new program, or in software that is to be developed for DISR and MER 
image processing (Archinal, 2004a). 
 
However, at this point in time, it appears that the first option should be followed.  
This appears to be the fastest way to reach an implementation which we can 
start to use for testing purposes.  It will rely on already well tested and working 
algorithms and I/O procedures.  It will also facilitate the combined adjustment of 
image measurements from framing cameras and line scanner cameras – which 
we need to do as part of this project (e.g.  using the THEMIS IR line scanner 
camera images along with framing camera images, such as from Viking or 
THEMIS VIS). 
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There would seem to be little to no advantage in writing a totally new program 
given that it seems the algorithm listed above will require some fairly 
straightforward (but admittedly extensive) changes to the randlsq program.  We 
have also not progressed far enough along with a planned adjustment program 
for DISR and MER and cannot wait (the likely few more months at least) for such 
software to be written and tested, before adding a line scanner camera model 
adjustment. 
 
So it appears that we should proceed to modify the current version of randlsq 
(currently available as laxmi:/work1/barchina/rupg/src/randlsq-ba-dev/randlsq.F).  
This is written in generic Fortran.  I personally would prefer Fortran continue to 
be used for changes (both in the interest of time and so I can assist with changes 
now and in the future if desired(!)), but we should consider whether parts or all of 
the code should be rewritten in C (or even C++?), if it would speed up the overall 
project or be planned for near-term work (e.g. under the ISIS IM project).  Some 
existing ISIS routines will likely have to be called, so changes to assist in calling 
such (C) routines will be necessary in any case. 
 
Bug fixes and some minor development of the randlsq program will probably 
continue even after the modifications described here are started.  Once this 
major modification of randlsq is complete, all of the changes should be merged 
together into one compatible program. 
 
Following are subsections which consider the various types of changes that 
would be needed to the randlsq.F (or its converted equivalent) code. 
 
 
4.1 Input/Output Changes 
 
Some changes will be necessary to read the THEMIS IR specific image 
measurements, as well as to read the SPICE data for such images.  Some 
changes will also be necessary in the “program control” input, and whether those 
are simply added to the current input or the input of this information is revamped 
is a matter of efficiency open to discussion. 
 
4.1.1  Image Measurements 
 
The image measurements will have been made by ISIS qmatch (or any 
equivalent software) and will be in pixel form.  These will have to be pre-
converted or read in and converted into mm measurements along each line, and 
time measurements along the image.  Camera model information will also have 
to be used in a pre-processing step or after reading the pixel measurements, e.g. 
regarding focal length and image distortions along each line. 
 
So, to be specific, the choice should be made whether to convert the pixel 
measurements in a pre-processing program (to an x value in mm and a y value in 
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time) or to convert them while reading them.  If the latter, for line-scanner image 
measurements, the current randlsq reading of pixel measurements would be 
bypassed, and input code written to read this information and needed information 
from the images, and to do conversions as necessary. 
 
In either case, the along line pixel measurements should be converted to mm, 
using the appropriate focal length (image scale) information, and camera model 
(taking care to use the values for the correct filter if they differ).  This information 
would have to hard coded, or more preferably read from either the images or the 
ISIS THEMIS parameters file ($ISISM01DATA/THM_parameters.def.7).  The 
along track pixel measurements should be converted to time, using the start time 
of the image (reference time), and the line time interval of the image (keyword 
“IRLINERATE”), as read from the labels of the images or the just mentioned 
parameter file.  During the solution itself, these times can then be converted to 
time differences from the middle of the image, as indicated in Section 2.2.3 
above. 
 
4.1.2 SPICE Data 
 
Currently randlsq reads SPICE data (in a specific ASCII format) for each image, 
including the time (Julian date), the camera orientation, and spacecraft position.  
For THEMIS IR and future line scanner cameras, this SPICE information is much 
more extensive, with the information available (and changing) several times in 
the course of the collection of a single image.  Rather than try to emulate the 
current randlsq program method (e.g. by putting out for each image these e.g. 7 
numbers many, many times in ASCII format!), it would seem far more reasonable 
to use (e.g. ISIS or NAIF) routines to read the SPICE data directly.  Similarly, 
once this information is updated via a solution, it should be written out so it will be 
available for further ISIS processing. 
 
So if line scanner image data were being read, the reading of the SPICE data 
from the current a priori file (sometimes called the pole, points, and position file) 
would be bypassed, and the SPICE data read in directly using the appropriate 
ISIS or NAIF routines. 
 
Note that the “pole and points” information could be (should be?) still read from 
the same file as before, because this same information is needed as with any 
framing camera solution. 
 
Also note that care must be taken regarding the definitions of the rotations as 
obtained from the SPICE CK kernel, since they may require transformation to 
match the rotation angle system used in randlsq. 
 
After a solution is complete, rather than outputting the SPICE data to an updated 
version of the a priori (poles, points, and position) file, a separate binary file of 
SPICE information should be output using appropriate NAIF/ISIS routines. 
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4.1.3  Program Control (Parameters) Information 
 
Currently, randlsq reads all program control information from a single control (or 
“parameters”) file.  Additional information will be needed to direct the randlsq 
program actions when handling line scanner camera images.  Specifically, the 
location of the input and output SPICE files, which additional parameters should 
be solved for on additional images, and the weights for those parameters, will all 
need to be read in. 
 
As noted above, this could probably be done by simply extending the format of 
the current parameters files, particularly in regard to specifying the additional 
parameters and their weights to be solved for.  The SPICE files names would 
have to be read from e.g. new lines in the parameter file, or from direct or 
command line entries for the program. 
 
An alternative might be to abandon the current method of reading the parameters 
entirely, and instead adopt the read of a PVL file, such as that set up by Ben 
Atkins, and used in his runrandlsq.pl script.  See his web pages at (e.g. for now) 
Magnus:/home/batkin/projects/rupg/`uname -s`/docs/html . 
 
 
4.2 Computational Changes 
 
These changes are the heart of the whole process of handling line scanner 
camera images.  The essential changes are described in Section 2 above, by 
outlining the additional parameters that we need to solve for for each image, and 
the additional partial derivatives that need to be computed to allow for the 
computation of these parameters.  I am not going to try to describe these 
changes in detail (e.g. line by line in the program) but will try to outline them here. 
 
4.2.1 Generation of A priori Information 
 
Since we are solving for additional parameters, we need to also generate a priori 
values for those parameters.  The additional parameters are the second order 
polynomial parameters in position and orientation.  The easiest way to do this is 
to successively treat the three elements of position and three elements of 
orientation, by taking the SPICE information for each of these (SPK and CK 
respectively) and fitting second order polynomials to this SPICE data.  (The 
SPICE could be evaluated at each line or perhaps more efficiently, at the position 
of each position (in the line direction) where a measurement exists, and the 
polynomials fitted to the resulting values.)  This curve fitting should be done in 
some standard way, e.g. with some standard routines (e.g. Numerical Recipes) 
that I will not try to describe here.  These a priori parameter values can then be 
used to generate the “computed” values of the “observations” (the mm sample 
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measurements, and time (line) measurements), as well as the desired partial 
derivatives. 
 
CK kernels for 2001 Mars Odyssey exist as *.bc files in the $ISISM01DATA 
directory or the NAIF ftp site (e.g. “m01_sc_map9.bc”).  These are NAIF “type 3” 
CK kernels (Bachman and Elson, 2002a), where pointing and the rate of change 
of pointing is given for discreet epochs over given intervals (e.g. when an image 
is being collected, or according to the kernel comments, when there is data more 
often than every 60 seconds).  Note however that kernel comments indicate the 
(angular) velocity information has simply been interpolated from the orientation 
information, so it does not really provide any additional information.  The naiflib 
CK kernel access software will linearly interpolate this orientation and orientation 
rate information at any times requested.  Initially it would probably be simplest to 
use the appropriate naiflib routines to provide this information before a 
polynomial fit is made to it in randlsq, but eventually it might be worth testing 
whether the information should be read for the specific times it is available, and 
that information fitted to a polynomial directly. 
 
SPK kernels for 2001 Mars Odyssey exist as *.bsp files in the $ISISM01DATA 
directory of the NAIF ftp site (e.g. “m01_map9.bsp”).  These are NAIF “type 1” 
PCK kernels (Bachman and Elson, 2002b), i.e. with “modified difference arrays” 
(MDAs).  This information appears to provide spacecraft position and velocity at 
discrete intervals.  Again, it would probably be simplest to use appropriate naiflib 
routines to collect this information and generate a priori polynomial coefficients, 
but it might be useful to test at some point whether using the MDAs directly 
would provide an increase in accuracy. 
 
4.2.2 Partial derivatives 
 
Partial derivatives will need to be computed as described in Section 2 above.  
Note here (and for the a priori computation) that for some images the use of all 
the possible new parameters will be optional.  In other words, even if we do so  
for test purposes, not all parameters will be solved for every image, so additional 
bookkeeping to keep track of the parameters to be solved for for each image will 
have to be added. 
 
The basic idea is that the randlsq software already solves for partials for most of 
the parameters of interest.  Also these partials are often solved for by the chain 
rule, so we need only solve for the very specific partials (listed in Section 2) for 
the new parameters, and then continue to compute the final partials (of the 
observations with respect to the parameters) by continuing to apply the chain 
rule, using some partials that are already available.  (I know, I know, this may not 
be entirely clear, but again, rather than cover this now line by line in randlsq.F, 
we can discuss it and work though it and the code if necessary.) 
 



 21

Various changes to handle the “overhead” of additional parameters will also be 
needed, e.g. dimensioning the initial arrays large enough, keeping track of which 
new parameters are needed for each image, and keeping track of weights (if any) 
on the new parameters.  Output will also need to be added to show the a priori 
and adjusted values of the new parameters for each image. 
 
Additionally, I have found it useful in least squares adjustment programs to keep 
track of the list of parameters being solved for in one (character) array.  This at 
least facilitates debugging and error checking in that values such as solved for 
parameters and their corresponding normal equation values can be checked and 
output as needed and quickly associated with their real meaning (as opposed to 
just their parameter number).  This type of tracking was not in the RAND 
software originally, as it simply recomputed the position of a parameter in the 
normal equations every time it needed it.  However, I have partially added this 
information in the form of the array “namep”, and this usage could easily be 
extended to handle the new parameters (handling not only a name indicating the 
type of parameter as is currently done, but also the image or point name that it’s 
associated with). 
 
4.2.3 Solution Output 
 
This has mostly been covered above, but after a solution has converged, 
additional output related to the line scanner camera data will be needed. 
 
At the least, “printed” output will be needed to show the a priori and solved for 
values, and uncertainties, of any new parameters added, e.g. the solved for 
polynomial coefficients for each image.  The uncertainties are only accessible in 
matrix inversion solutions, but with small numbers of images we should be able 
to do all the solutions by this method (handling a global mosaic will require the 
use of a conjugate gradient solution and/or the use of true block adjustment 
solution techniques.)  Along these same lines, it will also probably be quite useful 
to see the correlations (derived from the covariances, i.e. the off axis elements of 
the inverted normal matrix) of the position and orientation parameters for each 
image.  This would help to verify what types of weights are needed on these 
parameters and which parameters are even meaningful to solve for (since we 
know the correlation will be high between the position and orientation). 
 
The parameter weights actually used should also be shown with this output, or 
perhaps more conveniently to program, when they are set before the start of the 
solution (as they are now in a couple of different forms). 
 
We will also need to go back from the solved for polynomial coefficients to the 
representation used in the SPICE data.  So the reverse procedure of that 
described above will now be needed.  The second order polynomials will be used 
to evaluate the position, velocity, and orientation information, e.g. at each line, 
and then this new information could be output using the appropriate naiflib 
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routines for position and velocity (“type 1” SPK) and orientation (“type 3” CK).  
Further rotations (the reverse of any applied during reading) may need to be 
applied to the CK information before output, in order to convert from the randlsq 
to the CK file rotation system. 
   
This should complete the coverage of the changes needed.  The essential output 
of the solution will be represented by the updated SPICE kernels, from which 
new, geodetically controlled, mosaics can be generated, using normal ISIS 
procedures.  Updated positions for the control points will also be available as 
usual from the randlsq output. 
 
 
5. Testing and Near Term Work 
 
Tie point measurements on THEMIS IR images are being collected by L. Weller 
in the area of the 2 MER landing ellipses.  For at least one pair of mostly 
overlapping images, a substantial set of such measures is being collected (e.g. 
~100? tie points), and for the others reasonable numbers of tie points (e.g. ~10 
per image pair, including measurement against MOLA DIMs). 
 
Initial testing of the software should therefore center on adjusting the geometry of 
the pair of overlapping images with a dense set of measures.  An initial solution 
should be done using the same set of parameters normally used for a framing 
camera solution, i.e. solving only for the (3 angle) orientation of one and/or both 
of the images.  Successive solutions should then be done, increasing the number 
of parameters added in each solution (e.g. first adding position, then velocity of 
orientation change, then spacecraft velocity, then acceleration of orientation 
change, and finally spacecraft acceleration) and adjusting weights on these 
parameters if appropriate.  A similar series of solutions should also be done, 
reducing the number of tie points in each in order to see where the “break even” 
point is for tie points per image, for the given parameterization.  After each 
solution or sets of solutions, an analysis can be done to see if the addition of the 
parameters in question significantly improved the solution or not.  The residuals 
can also be examined to see if there is some motion that is not being adequately 
compensated for by the use of the second order polynomial fits. 
 
After this, the solutions should shift to handling the multiple images covering the 
MER landing ellipses, redoing some of the same sorts of comparisons indicated 
above.  In particular, the absolute positions of some number of points located in 
the adjustment should be compared with their MOLA DIM measured locations. 
 
A final step in this (CDP funded portion of the) project will be to collect tie point 
measurements from THEMIS VIS images, and adjust this data along with the 
corresponding THEMIS VIS image measures.  Some additional programming will 
be needed here in order to preprocess the VIS image measures, e.g. as is done 
for the other framing camera cases (e.g. a short preprocessing program like 
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isschange will be needed to convert pixel measures to idealized mm measures).  
But this will assure that VIS and IR image data can be adjusted together, and for 
that matter more generally that randlsq could then be used to adjust any framing 
camera measures (e.g. including Mariner 9 and Viking) along with THEMIS IR 
measures. 
 
If time permits (or in later work), we should also attempt to add as a parameter 
an offset to the absolute start time of each image or image portion.  The latter 
case will address the situation of images were lines are missing and the absolute 
time of some set of lines is not known.  The former case will address the situation 
where the difference between the commanded and actual start time of an image 
is not known.  This parameter could only be solved for relative to absolute (i.e. 
MOLA based) ground control, or if overlapping descending and ascending 
images (day and night) were adjusted together. 
 
Another addition that should be added fairly early on is the automatic handling of 
images that are “broken”, i.e. have any missing lines.  If such an image is 
processed (recognized how from the labels?), it should be treated as two 
different images, each with its own set of parameters.  It may be necessary to 
reject (with a suitable error message) the processing of any such partial images 
where insufficient measures then exist for the different portions.  A further 
extension of this would be to add an option to allow the user to manually treat 
some images in such a fashion, e.g. when other than automatically available 
information indicates the image was “broken”. 
 
 
6. Future Work 
 
Other, somewhat longer term issues are what additional parameters will need to 
be added (if any) for camera calibration, and also what additional types of 
constraints on the total transformations are needed. 
 
At some point in the future, it might be useful to add additional capabilities for the 
THEMIS IR line scanner camera system, e.g. for calibration purposes, and in 
order to treat the multiple infrared bands collected during each image acquisition 
as a multi-line scanner camera system.  For calibration, we should at least try to 
allow for the adjustment of the line scanner position (in the THEMIS case, as 
integrated over the lines used for each filter) relative to the camera boresight.  
Substantial information on this is available in the THEMIS frames kernel, e.g. 
locally at magnus:/home/jtorson/ik/m01_themis_v31.ti or from the NAIF ftp site.  
(Also see the 2001 Mars Odyssey frames kernel, available as 
$ISISM01DATA/m01_v26.tf or from the NAIF ftp site.)  Tom Duxbury and Anton 
Ivanov (both at JPL) have also done some investigations concerning these 
parameters and could be consulted for additional information. 
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It may also be desirable to add additional constraints or to even change the set of 
“additional parameters” described here in order to better solve for the line 
scanner camera geometry.  Only by testing using the procedures here will we 
likely see whether such improvements would be worthwhile. 
 
It would also be useful to add an option to not only break images into pieces and 
treat them separately (as discussed in the previous section) but to optionally 
make sure such images are treated in a piecewise continuous fashion if there in 
fact are no missing lines between the pieces.  Here constraints should be placed 
on the position, velocity, orientation, and orientation velocity so that the last line 
of one image will be handled in a consistent way with the next line – the first line 
of the next image. 
 
As noted already, eventually we plan to add capabilities to process data from the 
other planetary line scanner camera systems (MOC, HRSC, and HiRISE).  
Additional parameterization may also be needed for camera calibration of these 
instruments as well.  See for example R. Kirk’s summary of a camera (sensor) 
model for HiRISE (Appendix II below), where various camera calibration 
constants are described. 
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PREFACE 
 
This Note describes photogrammetric algorithms and software that can be used 
with data obtained from spacecraft optical imaging systems.  The algorithms and 
software allow for control point coordinates, camera orientation angles, the 
position of a target body’s north pole, and the target body’s rotation rate. 
 
This work can be used to generate control point networks and ancillary data for 
target bodies, which can then be used to mosaic individual photographs into 
unified cartographic products.  Hence, this work will be useful to many analysts in 
the planetary science community. 
 
This Note is intended to be used as a brief reference, rather than an all-
encompassing dissertation on the subject.  The intended audience consists of 
planetary scientists familiar with the basic data and possessing an intimate 
knowledge of FORTRAN. 
 
This work was done as part of the Galileo project for the Jet Propulsion 
Laboratory.  It has been tested with early data from Galileo, viz., the encounter 
with the asteroid Gaspra, and with older Voyager data. 
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SUMMARY 
 
Photographic images taken by a spacecraft, and ancillary data for these images, 
are used to solve for control point variables (latitude, longitude, and radius), 
camera orientation angles (right ascension, declination, and twist), and target 
body pole variables (right ascension and declination of the north pole, and 
rotation rate). 
 
This is done by first making pixel measurements on the images and transforming 
them to coordinates in the camera focal plane.  Then, for the time at which an 
image was taken, spacecraft position, camera orientation angles, the position of 
the target body’s north pole, the target body’s rotation rate, control point position, 
and camera focal length are used to calculate corresponding coordinates in the 
camera focal plane.  The observed and calculated coordinates are compared in a 
least-squares adjustment that solves for the above variables. 
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The mathematics of the photogrammetric least-squares procedure is described in 
detail.  It is presented in such a manner that readers desiring to make 
modifications are accommodated. 
 
The FORTRAN programs GALGAUSS and GALCGRAD are presented.  They 
solve the normal equations resulting from the least-squares adjustment in 
different ways.  One program employs Gaussian elimination, and the other uses 
the conjugate gradient method to cleverly solve large systems with minimal 
storage. 
 
The appropriate input and output files for the two FORTRAN programs are 
discussed and the programs themselves are extensively commented. 
 
[page vi is blank] 
 
[page vii] 
 

CONTENTS 
 
PREFACE iii 
SUMMARY v 
Section 
 1. INTRODUCTION 1 
 2. PHOTOGRAMMETRIC ALGORITHMS FOR SPACECRAFT OPTICAL 
IMAGING SYSTEMS 2 
 3. SOFTWARE DESCRIPTION 8 
Appendix 
 A. FORTRAN PROGRAM GALGAUSS 21 
 B. FORTRAN PROGRAM GALCGRAD 49 
REFERENCES 77 
 
 
[page viii is blank] 
 
[page 1] 
 

1. Introduction 
 
 
Let’s say I have in front of me a collection of images of some target body, e.g., 
the Moon, taken by a spacecraft with an optical imaging system.  And let’s say I 
want to deduce some things from these images.  Specifically, I would like to 
know the latitude, longitude, and radius of certain features on the target body.  
These features are called control points.  I would also like to know where the 
target body’s north pole lies and how fast the body rotates.  Finally, I want to 
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know the precise direction the spacecraft’s camera was pointing when it acquired 
an image. 
 
These tasks are accomplished by first making pixel measurements on the 
images of the features in which I am interested.  Because I know the focal length 
of the camera, I can transform these measurements to coordinates in the 
camera’s focal plane.  These are the observational data.  I have obtained them 
using just the images and by knowing the focal length. 
 
Remember our objectives from the first paragraph.  I solve for these variables by 
comparing the observational data, in a least-squares fashion, with a set of 
calculated data.  The calculated data are derived, in part, from approximations for 
the following variables: control point location (latitude, longitude, and radius), 
camera orientation angles (right ascension, declination, and twist), and target 
body pole variables (right ascension and declination of the north pole, and 
rotation rate).  Two other quantities are necessary to obtain our set of calculated 
data.  These are the times at which the images were taken and the positions of 
the spacecraft at those times. 
 
The least-squares fit of the calculated data to the observational data yields 
improvements to the approximated variables.  I can continue to iterate in this 
manner until all variables converge.  At this juncture I have a set of data that is 
self-consistent. 
 
Section 2 presents the mathematics of the photogrammetric least-squares 
adjustment.  I have attempted to be rigorous as well as general, so that a reader 
wishing to make modifications will have an easy time doing so. 
 
Section 3 describes the programs GALGAUSS and GALCGRAD (program 
listings are in the appendices) and their inputs and outputs.  Sample input and 
output files are given to demonstrate the formats of these files. 
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2. PHOTOGRAMMETRIC ALGORITHMS FOR SPACECRAFT 
OPTICAL IMAGING SYSTEMS 

 
We begin with a collection of photographic images.  Every image has associated 
with it a set of control points.  Each control point on an image is coupled with a 
pair (x0, y0), measured on the image and transformed to coordinates in the 
camera focal plane, and a latitude, longitude, and radius triplet (φ, λ, R). 
 
The coordinates of a control point in a body-fixed frame can be given by 
 

T)sin,sincos,cos(cos ϕλϕλϕRx =  (1) 
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From (1). 
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Define the right ascension and declination of the target body’s north pole by 
 

)(0 tααα +=  (2) 
)(0 tδδδ +=  (3) 

 
where t is the interval between the J2000 epoch and the time the image was 
taken, α0 and δ0 are constants, andα  and δ  are known functions of t. 
 
Define the spin-axis-inertial to Earth-equatorial-inertial transformation matrix as 
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From (2) and (4), 
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From (3) and (4), 
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Define the prime meridian of the target body by 
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where w0 is a constant defining the zero meridian, w&  is the target body’s rotation 
rate, and w is a known function of t. 
 
From (5). 
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Define the body-fixed to spin-axis-inertial transformation matrix by 
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From (6), 
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The coordinates of a control point in the J2000 Earth equatorial inertial system 
are given by 
 
MVxs =ˆ  (7) 

 
From (1)-(6), 
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Define s as the spacecraft position vector in J2000 coordinates.  The range 
vector, i.e., the vector subtended between the spacecraft and the control point, is 
then given by 
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sssv −= ˆ  (8) 

 
Then it is clear that 
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Define the camera orientation matrix, which transforms Earth equatorial inertial 
coordinates to camera coordinates, by 
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where α̂  and δ̂  define the direction of the optical axis, and κ specifies the picture 
rotation angle in the camera focal plane system. 
 
From (9), 
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Define ( )Tςηξ ,,=γ  as the range vector in camera coordinates, 
 

vCsγ =  (10) 
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By (8) and (10), 
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Define the coordinates of a control point in the camera focal plane by 
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where f is the focal length of the camera.  From (11), 
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Suppose there are a total of n control points, p pictures, m measurements and k 
= 3n + 3p + 3 unknowns. 
 
Define by ei the coordinate axis vectors in kℜ , i.e., 
 

( ) ( )TT 1,0,,0,,0,,0,1 LLL == k1 ee  
and define 

( ))()()1()1( ,,,, m
c

m
ccc yxyx L=u . 

 
Then the observation equations may be written in the form 
 

fLz =  (12) 
 
where 
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If one does not wish to solve for some of the variables, then the observation 
equations degenerate in an obvious manner.  Note also that a special case of the 
above equations allows for the solution of a single body-wide radius rather than a 
radius at each control point. 
 
The normal equations are formed by multiplying both sides of (12) by LT to get 
 
( ) fLzLL T=T  (13) 
 
Solving (13) gives the desired corrections, viz., 
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Iteration is continued until the variables no longer change. 
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3. SOFTWARE DESCRIPTION 
 
 
[…transcription to be continued…] 
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Appendix II 
 
HiRISE Sensor Model Information 
 
E-mail from R. Kirk to HiGeom group mailing list of 2004 November 22 
 
= = = = = = = = = = 
 
"Randolph L Kirk" <rkirk@usgs.gov> 
Sent by: owner-unix@flagmail.wr.usgs.gov 
11/22/2004 05:49 PM 
Please respond to higeom 
   
  To: HiGeom Group <higeom@flagmail.wr.usgs.gov> 
  cc:  
  Subject: [higeom] Sensor model formulation for ISIS 3 
 
 
 
Jim: 
  I apologize... I evidently never wrote anything down about sensor 
model approaches after our last meeting on the subject.  I'm happy to 
make a concrete suggestion how to proceed.  What I plan to suggest is 
not the only workable approach, but it is one of a couple that are 
general enough to make me happy about our prospects of being able to 
handle all our sensors in one framework. 
 
I'll start by defining the problem.  The overall problem of computing 
ground coordinates from image coordinates consists of the following 
steps: 
 
1.0) Given sample and line coordinates in an image, determine the 
sample and line in the physical detector, taking account of pixel 
summation. 
1.1) Given the physical detector sample/line coordinates, determine the 
XY coordinates of the pixel in the detector plane.  These are augmented 
with a Z coordinate that is closely related to the focal length, or at 
least the distance from the detector plane to the principal point. 
1.2) Use a radial distortion polynomial to compute new plane 
coordinates X'Y' from XY. 
1.3) Normalize the vector X'Y'Z appropriately, to get a unit vector 
pointing from the camera to the feature, expressed in the coordinate 
system of the camera. 
1.4) Rotate this vector into appropriate (body-fixed) coordinates. 
1.5) Find the intersection of the line through the spacecraft position 
with indicated direction (the unit vector) with the target.  This can 
be an iterative process if one is using a DTM instead of an ellipse to 
describe the target. 
 
The problem of computing image coordinates from ground coordinates 
consists of the following steps: 
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2.1) Take the difference between the feature coordinates (body fixed) 
and spacecraft coordinates to get the vector from feature to 
spacecraft. 
2.2) Normalize this to a unit vector 
2.3) Rotate this vector from body-fixed coordinates to camera 
coordinates 
2.4) De-normalize the unit vector into X'Y'Z where Z is related to the 
focal length. 
2.5) Apply the optical distortion in the opposite direction to above, 
to get XY from X'Y'. 
2.6a) For a frame sensor, calculate line and sample from X and Y 
2.6b) For a pushbroom sensor, calculate perpendicular distance from XY 
to the row of detector pixels.  Iterate 2.1-2.6 adjusting the assumed 
time of imaging until this distance is zero.  Calculate sample from XY 
and line from time. 
 
What we are concerned with here are strictly the steps 1.1 and 2.6 (and 
we also don't care about the details of how we iterate to adjust the 
time in 2.6b, but we do care about calculating the perpendicular 
distance). 
 
The vector we are going to compute to start with is the vector from a 
detector pixel to the optics principal point and on toward the target.  
The detectors are behind the optics in this conventional view, and they 
are also upside down.  It's equivalent, conventional, and easier to 
pretend that the detector plane is rightside up and in front of the 
principal point.  Then a line from the principal point to the pixel 
goes on through it and out into the world to intersect the target.  I 
can't draw this but can supply a figure.  Anyway, if the nominal 
optical plane is the XY plane (Z=0) and Z increases away from the 
target (out the back of the camera) then the principal point would 
normally be located at 0,0,f where f is usually called the focal 
length. 
(If the camera isn't actually focused at infinity, the distance along 
the Z axis won't be the focal length, but we can ignore that 
distinction.) 
The vector from principal point to pixel is then X,Y,-f.  
In the past, we've gotten X and Y by assuming that a particular pixel 
(the boresight, at sb, lb) is located at 0,0 and that the axes are 
along the rows and columns, so (say) X = delta * (s - sb) and Y = delta 
* (lb-l) where delta is the pixel pitch.  The sb and lb might be hard 
coded for a given instrument; for a scanner we might even assume Y = 0 
or Y = constant instead of the second equation.  We might have a 
detector with different pixel pitches in line and sample but we'd 
normally fix the image by resampling instead of dealing with this.  
Then we can store f/delta (the "focal length in pixels") in the code 
instead of f and ignore delta in the above equations.  We'd like to 
generalize on a lot of this stuff so we don't have to use a separate 
set of assumptions for each detector in the future. 
 
We also get a bunch of new complications when we have cameras with 
multiple detectors.  We could, perhaps, implement every detector as if 
it were a completely separate camera, but if we make a more physical 
model with one set of axes and one "focal length" (principal point 
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coordinate relative to the Z=0 plane) we will have to allow some of the 
detectors to be rotated and/or translated relative to that coordinate 
system.  These rotations/translations are not limited to the XY plane; 
the detector could be above/below the plane (making its apparent image 
scale different from the others) or it could be tipped, making the 
image scale vary across the field of view. 
 
One way to model these effects would be to use a general 3D 
transformation between camera coordinates and detector coordinates. 
This could be implemented with NAIF Frames but it does not have to be. 
We would then have a simple relation like 
 
Xdet =    delta * s 
Ydet = - delta * L 
Zdet = 0 
 
in the detector system, and a rotation/translation between this and the 
camera system to get X,Y,Z.  Then we would have to form our vector as 
X,Y,Z-f instead of just X,Y,Z.  I've written L instead of l, but for a 
frame camera this would indeed just be the line number.  For a scanner, 
the true image line l would only appear by determining the time, so L 
would either be 0 or we could use it as a bias factor to account for 
the effective location of different TDI buffer ranges being in 
different places in the coordinate system. 
 
The approach just outlined models the real physics but it has a couple 
of drawbacks.  We have to make a bunch of NAIF calls, which do a bunch 
of matrix and vector operations, every time we want to project a pixel. 
Then we have to form Z-f rather than having a fixed z-component to the 
vector of interest.  This is going to be somewhat slow. 
 
Also, when we go from ground to image for a scanner, we need to 
determine the distance from the feature point, projected into the 
detector plane, to the detector array.  But with the full 3D rotation 
the detector array doesn’t lie in the plane.  So some cleverness would 
be needed to figure out what distance needs to be reported.  The answer 
is that it's the 2D distance between the point projected into the 
detector plane and the detector line projected into the detector plane. 
 
The second approach to describing the detectors and carrying out the 
calculations is based on precisely the projection into the nominal 
detector plane that we had to do to get the distance anyhow, but it 
uses the projected coordinates for everything.  The result is a set of 
2D matrix/vector operations that will be faster than the 3D operations 
in the other approach.  The matrix coefficients will not be the 
physical transformation coefficients between frames, which might be 
seen as a disadvantage, but they can be related to real physical 
quantities.  Also, we can "own" these quantities ourselves instead of 
asking the NAIF frames software to manage them, so this will also give 
a speed advantage. 
 
The relation between sample and "line" L (in the sense above, either 
the detector line or some kind of mode-related offset) and XY in the 
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case where the detector does happen to lie right in the nominal plane 
is a 2D rotation and translation.   It takes the form  
X = C10 + C11 * s + C12 * L 
Y = C20 + C21 * s + C2 *2 L 
 
with certain restrictions on C11, C12, C21, C22 such that they form a 
rotation matrix times a scale factor.  Furthermore we know the scale 
factor is delta if the detector lies in the plane. The restrictions are 
C11*C21+C12*C22=0, C11*C12+C21*C22=0 and C11*C22-C21*C12=delta*delta.   
It's actually easier to start from the rotation and make C11 = C22 = 
delta*cos(theta) and C12 = -C21 = delta*sin(theta) to build such a 
matrix. 
 
The first generalization we can make to this model is to let the scale 
be other than delta.  This corresponds to letting the detector lie 
above or below the nominal detector plane but parallel to it.  We can 
relate the coefficients to physical quantities by forming the effective 
scale C11*C22-C12*C21 and comparing it to the true scale delta.  They 
will be in the ratio of f to f-Z.  
 
Relaxing the other two constraints lets the scale be different in the 
two directions and lets the line and sample directions be not 
perpendicular.  In both cases, it could be either the physical detector 
that has these properties (e.g., nonsquare pixels) or it could be an 
effect of projection into the nominal plane. 
 
However, if the detector isn't parallel to the nominal detector plane, 
the distance of different pixels above/below the plane will be 
different and the effective scale will actually change across the 
image.  The physical way to model this is to let Z be a linear function 
of pixel coordinates and then make the scale proportional to f/(f-Z).  
For small departures from the ideal model, i.e., Z << f, we get f/(f-Z) 
= 1(1-Z/f) approximately equal to 1+Z/f and the scale will vary 
linearly with pixel coordinates.  If the scale varies linearly, then 
the projected coordinate will vary quadratically. 
Thus, the general expression will become 
 
X = C10 + C11 * s + C12 * L + C13 * s^2 + C14 * s * L + C15 * L^2 
Y = C20 + C21 * s + C22 * L + C23 * s^2 + C24 * s * L + C25 * L^2 
 
Once again, this would be subject to certain restrictions.  The general 
form is capable of representing a detector whose rows and columns 
actually curve in a parabolic shape, whereas all we want is to have 
them project onto the nominal plane with a varying scale.  We can get 
the necessary constraints with not that much more work than I did in 
the case above, but I'm not sure it's worth it. 
 
What I recommend is that we 
 
a) Implement the code in the form just given, with 12 coefficients. 
b) Make initial estimates of the values for the coefficients for a 
given detector based on our understanding of the idealized geometry of 
the camera.  This means setting the quadratic coefficients to zero, 
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calculating C11 = C22 = delta, C12 = -C21 = 0, and figuring out the 
nominal offset. 
c) Adjust the coefficients to fit the calibration data.  This would be 
done so as not to introduce the full complexity that is possible. 
 
For example, we would first introduce the rotation theta used above.  
Then we might (for a line scanner) introduce a scale difference that 
depends only on sample, on the presumption that the variations in L are 
small anyway.  If we do this in such a way as to keep the projection of 
the detector into the nominal plane a straight line, we would have 
 
C13 = eps * C11 
C24 = eps * C21 
C14=C15=C23=C25=0 
 
where eps is yet another arbitrary constant.  We could actually set up 
the model with this restriction built into it, i.e., 
 
X = C10 + C11 * s*(1+eps*s) + C12 * L 
Y = C20 + C21 * s*(1+eps*s) + C22 * L 
 
but then we'd probably want to do something different for array 
detectors.  My opinion is that it's best to set up the quadratic 
mapping of detector line and sample to X and Y as given above, and then 
use restraint when we go to set up the coefficients for different 
cameras.  For area detectors we'd presumably always set 
C13=C14=C15=C23=C24=C25=0, but maybe we would someday encounter a 
camera with multiple area CCDs that aren't co-planar, and we'd be happy 
we had the more general format.  Or we might encounter a pushbroom 
camera whose line array got screwed down a little too hard so it's 
actually curved, and we could use the general coefficients to model 
this. 
 
The remaining problem is how to solve for the distance from a trial 
point projected into the plane to the detector curve when the curve is 
no longer a straight line. 
 
In the restricted case I'd plan to start with, the curve IS still a 
straight line and we could just define T = s*(1+eps*s) and have a line 
in XY parameterized by the variable T and the fixed quantity L.  Then 
the distance from a point at Xpoint,Ypoint to this line is easy to 
compute.  I don't have the formula memorized but it's a standard result 
of analytic geometry: easy to derive, even easier to look up. 
 
The perpendicular distance from a point to a quadratic curve should be 
computable fairly easily but it could be multiple valued in the general 
case.  I am going to break off now and go home before the roads freeze, 
so I'll work on this part of the problem at another time. 
      Cheers, 
      Randy 
 
__________________________________________________ 
Dr. Randolph L. Kirk 
Astrogeology Team                  Ph. 928-556-7020 
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U.S. Geological Survey            Fax 928-556-7014 
2255 N. Gemini Dr. 
Flagstaff, AZ  86001 USA 
NOTE new email address:  ASTROG::RKIRK and 
rkirk@flagmail.wr.usgs.gov are now rkirk@usgs.gov 
__________________________________________________ 
 
[Minor typographical errors have been corrected in the above.] 
 


